Core Needle Biopsy of the Breast
Striving Toward Fewer Excisions

Laura C. Collins, M.D.
Associate Professor of Pathology
Beth Israel Deaconess Medical Center
and Harvard Medical School
Boston, MA

Topics to be Discussed

• Introduction and background
• Management concerns
• Pitfalls and how to avoid them
• Problems following CNB and displaced epithelium
• CNB reporting and “lesions” easily overlooked

Some CNB Basics

• Core needle biopsies of non-palpable breast lesions began in late 1980s
 - Based on the premise that CNB samples the imaging abnormality and is representative of tissue obtained in an excision specimen
 - Pre-operative diagnosis of cancer
 - Spare patients with benign lesions open surgical biopsy
 - Overcome limitations of FNA
• Now standard of care for initial evaluation of breast lesions
Some CNB Basics

- Variety of radiologic guidance methods
 - Mammography, ultrasound, MRI
- Variety of needle sizes, with and without vacuum assistance
 - 14G needle with spring-loaded device for masses
 - Larger needles (11G-8G) with vacuum assistance for microcalcifications

Comparison of Specimen Sizes

Some CNB Basics

- CNBs are adequate for diagnostic studies (e.g. IHC and FISH) and determining prognostic and predictive factors (i.e. ER/PR and HER2)
- Interobserver agreement on diagnoses rendered on CNB is high, with results comparable to those achieved for excisional biopsy (Collins, Am J Surg Pathol, 2004)
Pathologist Agreement: Local vs Central Dx
Collins, 2004

<table>
<thead>
<tr>
<th>Condition</th>
<th>CNB (n=2002)</th>
<th>Open (n=546)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>96%</td>
<td>93%</td>
<td>0.008</td>
</tr>
<tr>
<td>Benign</td>
<td>99%</td>
<td>96%</td>
<td>ns</td>
</tr>
<tr>
<td>Invasive</td>
<td>97%</td>
<td>98%</td>
<td>ns</td>
</tr>
<tr>
<td>DCIS</td>
<td>84%</td>
<td>92%</td>
<td>ns</td>
</tr>
<tr>
<td>ADH</td>
<td>64%</td>
<td>58%</td>
<td>ns</td>
</tr>
<tr>
<td>ALH/LCIS</td>
<td>56%</td>
<td>67%</td>
<td>ns</td>
</tr>
</tbody>
</table>

Some CNB Basics

- Knowing clinical history and imaging findings, including radiologist’s differential diagnosis, is essential
- CNB for microcalcifications
 - Specimen radiograph
 - Cores with and without calcifications should be submitted separately
 - Very helpful to have specimen radiograph submitted with specimen (or to have access to it)
 - Calcifications seen on slide must correlate with those seen on radiograph
The Missing Calcifications

- Additional levels
- Radiograph blocks
- Look for holes/tears in tissue
- Calcium oxalate?
The pathologic diagnosis on a core biopsy must be concordant with the impression from imaging studies.
Discordant diagnoses must be reconciled; may require repeat core biopsies or surgical excision.
Radiology-pathology correlation conferences.
Communication: The Essential Component of Any Core Needle Biopsy Program

Examples of Discordance

<table>
<thead>
<tr>
<th>Imaging</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiculated mass</td>
<td>Any benign diagnosis (?except radial scar)</td>
</tr>
<tr>
<td>Circumscribed mass</td>
<td>Benign, non-specific diagnosis</td>
</tr>
<tr>
<td>“Malignant” calcs</td>
<td>Any benign diagnosis, even if calcs present</td>
</tr>
</tbody>
</table>

Radiographic-Pathologic Correlation

- Some cases are nebulous with regard to concordance
 - Non-mass-like enhancement on MRI
 - Pathologic correlates?
 - Vague mass/developing density on imaging
 - Variably fibrotic breast tissue on CNB with no discrete mass-forming lesion
 - PASH on CNB
 - Found in ~25% of all benign breast biopsies
Diagnostic Problems

- Similar to those encountered in excisional biopsies
 - ADH vs. low grade DCIS
 - Identifying foci of invasion in association with DCIS
 - DCIS vs. LCIS
 - Tubular carcinoma/low grade invasive ductal carcinoma vs. benign sclerosing lesions
 - Papillary lesions
 - Spindle cell lesions
 - Columnar cell lesions (FEA vs. not)
 - Mucocle-like lesion vs. mucinous carcinoma
 - Fibroepithelial lesions
 - Vascular lesions

Management Problems

- Some diagnoses on CNB may be upgraded to a worse diagnosis at excision
 - DCIS
 - ADH
 - Lobular neoplasia
 - Papilloma
 - Radial Scars
 - FEA
 - Fibroepithelial lesions

Management Problems

- The opportunity to detect and diagnose non-malignant breast lesions has changed dramatically over the last few decades, leading to uncertainty as to optimal management
Management Problems

• Literature consists of small, single institution, retrospective studies, many lacking clear criteria for excision vs. follow up, and often with selection bias and very short lengths of f/u
• Lack of clear rad-path correlation, with many upgraded cases having imaging features that warranted excision
• Criteria for ADH established on open biopsies, not the limited material afforded by CNB
• Upgrade rates variably defined
• Definition of “high-risk lesion” varies by discipline

ADH on CNB

Conventional Wisdom

ADH on CNB requires surgical excision to exclude carcinoma (DCIS + invasion)

Upgrade to Worse Lesion on Excision Related to

• Technical factors:
 – Gauge of needle
 – Lesion targeted (calcs vs. mass)
 – Completeness of removal
• Pathologic factors:
 – Extent of ADH on core
 – Histologic features of ADH
Attempts at Stratification

- Extent of ADH on CNB
 - # of foci of ADH
- Features of ADH on CNB
 - Micropapillary pattern
 - "Marked" ADH
 - Cytologic features bordering on DCIS
- Features of microcalcifications
 - Linear, branching vs. fine, rounded calcifications

Ely, 2001; Sneige, 2003; Dalton, 2003; Ely, 2008; Hoang, 2008; Wagoner, 2009; VandenBussche, 2013

ADH Diagnosed on CNB
Studies with Radiologic-Pathologic Correlation

<table>
<thead>
<tr>
<th>Atypical ductal hyperplasia on core biopsy with upgrade to carcinoma on excision</th>
<th>Core Biopsies</th>
<th>Excisions</th>
<th>Carcinoma (%)</th>
<th>DCIS</th>
<th>IMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wagoner 2009</td>
<td>123</td>
<td>123</td>
<td>22 (18%)</td>
<td>22 (18%)</td>
<td>0</td>
</tr>
<tr>
<td>Kohr 2010</td>
<td>101</td>
<td>101</td>
<td>20 (20%)</td>
<td>17 (17%)</td>
<td>3 (3%)</td>
</tr>
<tr>
<td>McGhan 2012</td>
<td>114</td>
<td>114</td>
<td>20 (18%)</td>
<td>15 (13%)</td>
<td>5 (5%)</td>
</tr>
<tr>
<td>Khoury 2014</td>
<td>203</td>
<td>203</td>
<td>57 (28%)</td>
<td>47 (23%)</td>
<td>10 (5%)</td>
</tr>
<tr>
<td>Menes 2014</td>
<td>685</td>
<td>685</td>
<td>123 (18%)</td>
<td>101 (15%)</td>
<td>22 (3%)</td>
</tr>
<tr>
<td>Total</td>
<td>1226</td>
<td>1226</td>
<td>242 (20%)</td>
<td>202 (17%)</td>
<td>40 (3%)</td>
</tr>
</tbody>
</table>

Long-Term Safety of Observation in Selected Women Following Core Biopsy Diagnosis of Atypical Ductal Hyperplasia

Inclusion Criteria:
- Removal >50% of calcs
- No mass
- <3 foci of ADH
- No necrosis

Median f/u 3 yrs

Only personal history of breast cancer was associated with subsequent breast cancer events (HR=12.5; 95%CI 3.3-47.6)
Ann Surg Onc, Menen, 2017
Attempts at Stratification

- We are getting closer to identifying a subset of patients with ADH on CNB who can safely be spared excision
 - Larger gauge needles
 - Multiple cores
 - No residual calcifications
 - Limited ADH on histology

Our current practice:
Excision for patients with ADH on CNB

Lobular Neoplasia on CNB
Longstanding Practice

- LN on CNB requires surgical excision to exclude a worse lesion (DCIS + invasion)
- Upgrade rates reported range from 0-33%
- But classical LCIS/ALH is usually an incidental finding with no associated imaging target....
Lobular Neoplasia on CNB

- More contemporary studies with careful radiologic-pathologic correlation demonstrate very low upgrade rates when classical LN is determined to be incidental

<p>| ALH and LCIS on core biopsy and excision with radiologic-pathologic concordance |</p>
<table>
<thead>
<tr>
<th>Core Biopsies</th>
<th>Excisions</th>
<th>Carcinoma (%)</th>
<th>DCIS</th>
<th>IMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neel 2012</td>
<td>69</td>
<td>69 / 5 (8%)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Randi 2012</td>
<td>76</td>
<td>69 / 3 (4%)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Zhao 2012</td>
<td>163</td>
<td>163 / 5 (3.1%)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Shah-Rihani 2012</td>
<td>101</td>
<td>101 / 2 (2%)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Zhao 2012</td>
<td>74</td>
<td>74 / 6 (8%)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mikes 2013</td>
<td>59</td>
<td>59 / 2 (4%)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Murray 2013</td>
<td>72</td>
<td>72 / 2 (3%)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D’Alfonso 2013</td>
<td>61</td>
<td>61 / 6 (10%)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Nakhlis 2015</td>
<td>74</td>
<td>74 / 1 (1%)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sen 2016*</td>
<td>436</td>
<td>436 / 11 (2.5%)</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>1,167</td>
<td>1,169 / 43 (3.7%)</td>
<td>28</td>
<td>16</td>
</tr>
</tbody>
</table>

Lobular Neoplasia on CNB

Current Practice

- Truly incidental classical LCIS or ALH do not require surgical excision
- Upgrades usually small, low grade invasive carcinomas (?incidental)
- Insufficient data on non-classical (variant) forms of LCIS, which are more often the imaging target due to their association with microcalcifications-excision is warranted
- Do not diagnose these cases as LN NOS!
Papilloma on CNB
Issues of Concern

- Distinction among benign, atypical and malignant papillary lesions difficult, especially with limited material
- Sampling issues: otherwise benign papillomas may harbor foci of ADH or DCIS

Evaluation of Problematic Papillary Lesions

- Histologic features
- Adjunctive immunostains
 - Myoepithelial cell markers
 - CK 5/6
 - ER

Table 1: Diagnostic criteria of papillary lesions

<table>
<thead>
<tr>
<th>Category</th>
<th>Pathologic diagnosis</th>
<th>Mitotic activity</th>
<th>myoepithelial cell layers and/or areas of DIFP</th>
<th>ER expression in areas of DIFP</th>
<th>Proportion of CK5/6 negative DIFP in solid lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign papillomas</td>
<td>Pseudopapillomatous</td>
<td>< 5/mm²</td>
<td>In papillary core or involved ductules</td>
<td>Not diffused staining</td>
<td>Not diffused staining</td>
</tr>
<tr>
<td>Benign papillomas</td>
<td>Papillomas with ADH</td>
<td>< 5/mm²</td>
<td>In papillary core or involved ductules</td>
<td>Not diffused staining</td>
<td>Not diffused staining</td>
</tr>
<tr>
<td>Benign papillomas</td>
<td>Papillomas with DCIS</td>
<td>< 5/mm²</td>
<td>In papillary core or involved ductules</td>
<td>Not diffused staining</td>
<td>Not diffused staining</td>
</tr>
<tr>
<td>Malignant papillomas</td>
<td>Papillary carcinoma</td>
<td>> 5/mm²</td>
<td>Interdigitating myoepithelial cells</td>
<td>Loss of expression</td>
<td>Loss of expression</td>
</tr>
<tr>
<td>Malignant papillomas</td>
<td>Papillary carcinoma</td>
<td>> 5/mm²</td>
<td>Interdigitating myoepithelial cells</td>
<td>Loss of expression</td>
<td>Loss of expression</td>
</tr>
<tr>
<td>Malignant papillomas</td>
<td>Carcinomas</td>
<td>> 5/mm²</td>
<td>Interdigitating myoepithelial cells</td>
<td>Loss of expression</td>
<td>Loss of expression</td>
</tr>
</tbody>
</table>

Br Cancer Res Treat, 2013
Benign Papilloma on CNB with Excision

<table>
<thead>
<tr>
<th>Study</th>
<th>Cases</th>
<th>Excision Carcinoma (%)</th>
<th>Upgraded (%)</th>
<th>Specimen Fragmentation (%)</th>
<th>Predominantly Small Carcinomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaffer, 2009</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bennett, 2010</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chang, 2010</td>
<td>100</td>
<td>10</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Jung, 2010</td>
<td>160</td>
<td>10</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Cyr, 2011</td>
<td>193</td>
<td>8</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Kim, 2011</td>
<td>211</td>
<td>12</td>
<td>9%</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Richter-Ehrenstein, 2011</td>
<td>45</td>
<td>2</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Youk, 2011</td>
<td>160</td>
<td>8</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Fu, 2012</td>
<td>203</td>
<td>12</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Holley, 2012</td>
<td>128</td>
<td>14</td>
<td>16%</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Li, 2012</td>
<td>370</td>
<td>7</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Rizzo, 2012</td>
<td>234</td>
<td>21</td>
<td>9%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Jaffer, 2013</td>
<td>114</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nayak, 2013</td>
<td>80</td>
<td>3</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Swapp, 2013</td>
<td>224</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pareja, 2016</td>
<td>196</td>
<td>4</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Total: 2542, 1946, 110

Incidental Upgrade

- Concurrent ipsilateral carcinoma
- Specimen fragmentation (100% of upgraded cases vs. 46% of non-upgraded cases)
- Predominantly small, incidental carcinomas found at excision
Microscopic Incidental Papillomas on CNB

- **Jaffer, Breast J 2013**
 - 14 excisions for incidental papilloma
 - No upgrades
- **Lee, AJR 2012**
 - 17 microscopic papillomas
 - Could not determine if incidental or associated with imaging target
 - No upgrades
- **BIDMC experience**
 - 10% of papillomas (12/121) on CNB were incidental findings
 - 50% underwent excision; no upgrades

Our Current Practice

<table>
<thead>
<tr>
<th>Excision for</th>
<th>No Excision for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted Papillomas</td>
<td>Incidental Papillomas</td>
</tr>
</tbody>
</table>

Fibroepithelial Lesions on CNB

- Diagnosis of fibroadenoma on CNB usually straightforward
- If it looks like a fibroadenoma, call it a fibroadenoma
- Excision not required
Fibroepithelial Lesions with Increased Stromal Cellularity
Cellular FA vs. Phyllodes Tumor

• How cellular is too cellular?
• Features favoring phyllodes tumor:
 – Fragmentation
 – Epithelium along edges of fragments
 – Imbalance between glands and stroma
 – Mitoses
• Excision required
• Not essential make decision on CNB
Fibroepithelial Lesions on CNB

• An apparently pure spindle cell lesion on CNB may still be a phyllodes tumor
• Don't exclude the possibility of phyllodes tumor even if no epithelial component is seen
Flat Epithelial Atypia

FEA on core biopsy
- “Upgraded” in 0-30% of cases
- But need for excision remains uncertain
- Rad-path correlation required

Can Mucocele-Like Lesions Be Reliably Diagnosed on CNB?

- Reported upgrade rates to DCIS or invasive cancer range from 0 to 30%
- Small numbers
- Not all patients underwent excision
- Includes cases of mucocele-like lesions with and without atypia/ADH
What About Mucocele-Like Lesions Without Atypia on CNB?

- 156 cases reported in 14 studies
 - Studies ranged in size from 3-54 pts
 - 6 upgrades (3.8%)
 - 3 DCIS
 - 3 invasive carcinoma

Rakha, et al, 2013

Mucinous Lesions on Core Needle Biopsy (that are not obviously mucinous ca or DCIS with mucin production)

- Excision required if there is
 - pathologic-radiologic discordance
 - epithelial atypia/ADH
- Excision may not be required if the findings are unequivocally those of a mucocele-like lesion without atypia/ADH and if radiologic and pathologic findings are concordant
- Multiple levels to R/O mucinous carcinoma
SUMMARY

Upgrade rate (%): CNB to excision

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Upgrade Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atypical ductal hyperplasia</td>
<td>20–30</td>
</tr>
<tr>
<td>Atypical lobular hyperplasia</td>
<td>0–10</td>
</tr>
<tr>
<td>Lobular carcinoma in situ</td>
<td>0–10</td>
</tr>
<tr>
<td>Other problematic lesions</td>
<td></td>
</tr>
<tr>
<td>Flat epithelial atypia</td>
<td>0–10</td>
</tr>
<tr>
<td>Papilloma</td>
<td>0–10</td>
</tr>
<tr>
<td>Radial scar</td>
<td>0–10</td>
</tr>
<tr>
<td>Mucocoele-like lesion</td>
<td>0–30*</td>
</tr>
</tbody>
</table>

(includes cases with atypia)
How to Avoid Getting Yourself Into Trouble

• Be aware of the imaging findings and the radiologist’s differential diagnosis
• Liberal use of levels
•Judicious use of immunostains
• Be conservative; avoid overdiagnosis when findings are equivocal
 – esp with regard to ADH vs. DCIS, DCIS vs. DCIS with microinvasion, in situ vs. invasive lesion

How to Avoid Getting Yourself Into Trouble

• Questions you should ask yourself:
 – It looks like an epithelial malignancy but is it really a carcinoma?
 – It’s definitely carcinoma but is it really a breast primary?
 – Is this even a breast lesion?
Epithelioid Angiosarcoma

Keratin
CD31
Factor VIII
How to Avoid Getting Yourself Into Trouble

• Questions you should ask yourself:
 – It looks like an epithelial malignancy but is it really a carcinoma?
 – It’s definitely carcinoma but is it really a breast primary?
 – Is this even a breast lesion?
Metastatic papillary carcinoma of ovarian origin

Metastatic carcinoid of colonic origin
Extramammary Malignancies Metastatic to the Breast

• When to start thinking about a metastasis:
 – Histology unusual for breast primary
 – Absence of in situ component
 – Extensive LVI with little or no stromal invasion
 – Triple negative

How to Avoid Getting Yourself Into Trouble

• Questions you should ask yourself:
 – It looks like an epithelial malignancy but is it really a carcinoma?
 – It’s definitely carcinoma but is it really a breast primary?
 – Is this even a breast lesion?
Angiolipoma in subcutaneous adipose tissue

Problems in Surgical Specimens Following CNB

- The missing cancer
- Measurement of tumor size
- Epithelial displacement
Problems in Surgical Specimens Following CNB

- The missing cancer
- Measurement of tumor size
- Epithelial displacement

The Missing Cancer

- Invasive cancer or DCIS in core; no corresponding lesion
- Relatively uncommon, but does happen

The Missing Cancer

- Patient misidentification
- False positive CNB
- Biopsy site not excised (even if clip is localized)
 - Clip migration
 - Be sure to look for biopsy site changes
The Missing Cancer

- Inadequate sampling of surgical specimen
- Lesion entirely removed by CNB
- Obliteration of residual cancer by healing process
- Post-neoadjuvant therapy (with no history provided)
 - Look at date of prior CNB

Problems in Surgical Specimens Following CNB

- The missing cancer
- Measurement of tumor size
- Epithelial displacement

Measurement of Tumor Size

- May be difficult due to associated biopsy site changes disrupting or fragmenting tumor
Measurement of Tumor Size

- Review prior core needle biopsy to determine largest size
- Review size on imaging studies (especially ultrasound)
- “The tumor measures 7mm but a portion of this measurement includes biopsy site changes”

Problems in Surgical Specimens Following CNB

- The missing cancer
- Measurement of tumor size
- Epithelial displacement

Epithelial Displacement

- Benign
- DCIS
- Invasive
- Stroma
- Vascular spaces
- Lymph nodes
Epithelial Displacement

• Frequency inversely related to CNB interval

• More common with papillary lesions

Diaz, 1999; Nagi, 2005; Phelan, 2007
To Avoid Overdiagnosis of Stromal Invasion

- Look for invasion away from biopsy site
- Look for recognized type/pattern of invasive cancer
- Myoepithelial cell markers only helpful if positive
To Avoid Overdiagnosis of Vascular Space Invasion

• Be extremely conservative if there is only DCIS or a benign lesion

• In cases of invasive carcinoma, look for vascular involvement away from biopsy site

Displaced Epithelium in Axillary Lymph Nodes

• Epithelial cells may reach ALN through benign mechanical transport

• Associated hemosiderin-laden macrophages and damaged RBCs favor mechanical displacement (Carter, Am J Clin Pathol 2000)
Displaced Epithelium vs. ITC
Does it Really Matter?

• NSABP B-32 trial (Weaver, 2011)
 – Micromets and ITC associated with very small decrease in survival
 • Statistically significant, but not clinically meaningful
• ACOSOG Z0010 trial (Cote, 2010)
 – SLN mets detected by IHC not significantly associated with reduced survival

Contents of the CNB Report

• The correct diagnosis, of course
• Biopsies for calcifications
 – Location of calcifications
 – Do the calcifications you see microscopically account for the calcifications seen on mammogram and specimen radiograph?

Contents of the CNB Report

• Biopsies for masses with benign histology on CNB
 – Do the histologic findings account for a mass lesion? If not:
 • “Diagnostic features of a mass-forming lesion are not seen; clinical and radiologic correlation are advised.”
 – Be on the lookout for clusters of apocrine cysts, cyst wall, tumor-forming PASH, lymphocytic (diabetic) mastopathy
Apocrine cysts

Cyst wall

Lymphocytic mastopathy

Lymphocytic mastopathy
Contents of the CNB Report

• Biopsies with invasive cancer
 – Histologic type, histologic grade, maximum size
 – ER, PR, HER2
 • Sometimes one or more needs to be repeated on surgical specimen:
 – Repeat ER, PR, HER2 if tumor on core is triple negative, s/p neoadjuvant therapy, insufficient for accurate assessment, or results on core are unexpected (e.g., ER-negative ILC or tubular ca)
 – Repeat HER2 if HER2 negative on core and tumor is grade 3
 – Repeat HER2 if HER2 equivocal on core

What Not to Say in CNB Reports

• “Multifocal” anything!
 – “Multifocal” invasive cancer
 – “Multifocal” DCIS
 – “Multifocal” LCIS
• More than you really need to say to get the patient to the appropriate next step